Influence of Optical Fluence Distribution on Photoacoustic Imaging

نویسندگان

  • Mohamed K. Metwally
  • Sherif H. El-Gohary
  • Kyung Min Byun
  • Seung Moo Han
  • Soo Yeol Lee
  • Min Hyoung Cho
  • Jinsung Cho
چکیده

Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect. Keywords—Finite Element Method, Fluence Distribution, Monte Carlo Method, Photoacoustic Imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method.

We have modified the existing convolution method of the Monte Carlo simulation for finite photon beams with both translational and rotational invariance. The modified convolution method was applied to simulate the optical fluence distribution in tissue in dark-field confocal photoacoustic microscopy. We studied the influence of the size of the dark field and the illumination incident angle on t...

متن کامل

Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography.

The specificity of molecular and functional photoacoustic (PA) images depends on the accuracy of the photoacoustic absorption spectroscopy. The PA signal is proportional to the product of the optical absorption coefficient and local light fluence; quantitative PA measurements of the optical absorption coefficient therefore require an accurate estimation of optical fluence. Light-modeling aided ...

متن کامل

Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals.

Photoacoustic tomography (PAT) is a hybrid imaging technique that has broad preclinical and clinical applications. Based on the photoacoustic effect, PAT directly measures specific optical absorption, which is the product of the tissue-intrinsic optical absorption coefficient and the local optical fluence. Therefore, quantitative PAT, such as absolute oxygen saturation (sO₂) quantification, req...

متن کامل

Quantitative Photoacoustic Image Reconstruction using Fluence Dependent Chromophores

In biomedical photoacoustic imaging the images are proportional to the absorbed optical energy density, and not the optical absorption, which makes it difficult to obtain a quantitatively accurate image showing the concentration of a particular absorbing chromophore from photoacoustic measurements alone. Here it is shown that the spatially varying concentration of a chromophore whose absorption...

متن کامل

Mapping optical fluence variations in highly scattering media by measuring ultrasonically modulated backscattered light.

Knowledge of the local optical fluence in biological tissue is of fundamental importance for biomedical optical techniques to achieve quantification. We report a method to noninvasively measure the local optical fluence in optically inhomogeneous scattering media. The concept is based on two aspects: the local tagging of light using ultrasonic modulation and the photon path reversibility princi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014